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A STUDY OF THE EFFECT OF RADICAL LOAD DISTRIBUTIONS

ON CALIBRATED STRAIN GAGE LOAD EQUATIONS

derald M. Jenkins and Albert E. Kuht
Dryden Flight Research Center

INTRODUCTION

For several decades, airplane flight loads have been measured using calibrated
strain gages. The basic approach, which was formally documented in 1954 (ref. 1),
consists of two distinct processes. First the information from a point load calibra-
tion of the lifting surface is used to obtain a linear expression that relates the
applied loads to the strain gage outputs. The second process is the acquisition of
flight data, which involves deducing flight loads from flight-measured strains. The
empirical relationships established during the ground load calibration are used in
the deductive process.

The procedure to evaluate the validity of a load equation has been a restricted
one. It consists of obtaining a set of calculated loads from the equation based on the
strain information obtained from each of the applied calibration loads. In other
words, the accuracy of the equation is assessed only on the basis of information
developed during the load calibration. In general, the distributions and magnitudes
of the flight loads to be measured are not considered. Therefore, the range of
applic oility of the equatior. is not established.

These conventional procedures have, in great part, served the needs of flight
test and research programs. However, with the evolution of supersonic and hyper-
sonic airplanes, the measurement of flight loads has become more complex. In
particular, many problems have resulted from low aspect ratio fins (ref. 2) and
delta-wing airplanes (refs. 3 to 5), Little additional work has been done to assess
the applicability of conventional processes to recently developed aircraft. In many
recent studies, the point load calibration has been replaced by distributed and
semidistributed load calibrations. The introduction of such approaches provides
reason to question the validity of the conventional processes for evaluating the
accuracy and applicability of & load equation.

This report uses a computational procedure to examine the validity and applica-
bility of various load cquations for various load distributions. The computational
procedure used is designed to link the ground load calibration to the measurement
to be made in flight.
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Subscripts:

m

n

SYMBOLS

bending moment

influence coefficient for the jth strain gage due to a load applied at
the ith load point, Mo /Lc » 1/N (1/1b)
F I |
discrete load point
discrete strain gage

calibration load applied at the ith load point, N (Ib)
local load applied at the ith load point, N (Ib)

total load applied to the wing, N (Ib)

shesar load

torsiuvn load

voltage change resulting from straining the active arms of a strain
gage bridge

reference voltage change resulting from shunting a calibrated
resistor across one arm of a sirain gage bridge

nondimensional strain gage response, §/86 cal

nondimensional strain gage response for the jth strain gage due to
the applied calibration load

summation of total nondimensional strain gage responses for the jth
strain gage due to the total superposition of all local loads

total nondimensional strain gage response for the jth strain gage due
to the local loading at the ith load point

total number of strain gages on wing

totar “imber of calibration toad points on wing
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DELTA-WING TEST STRUCTURE

The structural skeleton of a complex delta-wing aireraft is shown in figure 1,
The wing, which is of a multispar construction with an outboard engine nacelle, was
thoroughly instrumented with strain gages and a load calibration was performed
(refs. 3 to 5). The locations of the strain gages are shown in figure 2. Even-
numbered strain gages are configurcd to sense shearing strains and odd-numbered
gages are configured to sense bending strains. The completeness of the strain gage
instrumentation and the load calibration of the structure provide the basis for the
analytical study contained in this paper.

LOAD EQUATIONS

Load equations that relate applied wing loads to wing root strain gages are
presented in table 1. These equations were derived by the method described in
reference 4 and the equation numbers are consistent with those given in that refer-
ence. Additional discussion of the equations is presented in reference 6. The
letter S, B, or T in an equation number indicates whether the equation was devel-
oped for shear, bending moment, or torsion, respectively. The three digit sub-
script, such as 302, identifies the strain gage associated with the output, u. All
the shear and torsion equations use five strain gage outputs; the bending moment
equations require the outputs of only two or three strain gages.

The procedure for the error analysis of these equations is discussed in refer-
ences 1 and 4. The standard error of each equation is given in table 2.

COMPUTATIONAL PROCEDURES

The convent.onal processes used to acquire flight loads data are listed in
table 3. The laboratory process includes the activities that result from applying
loads to a lifting surface, measuring the strain gage responses, and deriving a
mathematical relationship between the loads and the responses. The flight testing
includes the acquisition of the flight test data and the use of the laboratory data to
interpret the information. In the past, this process has been a closed-loop situation.
Accuracy statements have been based on the laboratory calculations and estimates
of the flight data recording system capabilities.

A more complete knowledge of the applicability of an equation developed from
laboratory and flight test processes can be acquired by computational means. Two
types of computational processcs are outlined in table 3, The first computational
procedure is reported in reference 6. This computation uses a finite clement
structural model to determine where straiu gages should be located and how they
should be combined into equations beforr the lond calibration is done. The second
computation evaluates the ability of a particular equation to caleulate widely varying
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distributions of load. The study of this computation and its results is the basis for
this paper,

The distribution of aerodynamic loads on a lifting surface, such as an airplane
wing, varies in both the chord and span directions, depending on flow conditions
and the attitude of the lifting surface. The most dramatic variations occur in the
chord direction., The variations for three characteristic loadings are shown in
figure 3. Two of the three loadings (figs. 3(a) and 3(b)) can be attributed to
variations in Mach number. The forward center of pressure loading is developed
from the classic subsonic chordwise pressure distribution of reference 7 and the
spanwise distribution of subsonic pressure developed in reference 8. The central
center of pressure loading is typical of supersonic flow where the load is distributed
uniformly over the lifting surface. The third distribution (fig. 3(c)), which
represents a center of pressure located near the trailing edge of the lifting surface,
typically results from control surface-induced loads, which are defined in refer-

ence 9. These three loadings represent a widely varying set for computational
analysis.

A schematic of the computational procedure is shown in figure 4. The labora-
tory load calibration provides information from which experimentally determined
influence coefficients are obtained and load equations are developed. These
coefficients and equations are the keys to the computation. Each of the hypothetical
loadings can be divided into local area loadings. The manner in which the loading
is subdivided is vased on the location of laboratory calibration loads. For the
present study, the wing surface was subdivided to correspond to the calibration
load point locations, as shown in figure 5.

A typical local loading is shown in figure 6. This local loading can be used to
calculate the total strain gage output for the jth strain gage and the ith load point,
By oo which can be determined from the equation

Meg; " (L'i)(lji)

where LI is the local loading at the ith point and I ji is the influence coefficient
i

determined from the load calibration. The influence coefficient is defined as

He.
I :.—L
Ji L

€

where He is the total output of the jth strain gage duc to the calibration loac’,

i
LC , applied at the ith load point,
i
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The total outputs for all the strain gages can be caleulated for all the loeal
loadings. Henee, for any discrete strain gage, j, the total output, Rep s due to the
total load, I‘T’ ran be expressed as

i=n

77 & (i

i=1

where n is the total number of local loadings. The number n also corresponds to the
number of load points used in the laboratory load calibration.

The total output Ko is input directly to a load equation that was developed using

the jth strain gage. If m strain gages are available, then for each way the load is

distributed, the outputs to be calculated are P , U s « « + P, « + « B . For
T1 '1‘2 Tj Tm

this study, the load was distributed in the three ways shown in figure 3. Therefore,

there are three identical total loads, LT' which are distributed in three ways by way

of the local loadings, L, . From this information, local strain gage outputs, u, ,

ji
can be calculated. Then total strain outputs, oy 5 CAN be calculated for m strain

gages for each of the three total load distributions. Three known load distributions
can now be applied mathematically to the structure; then these loads can be calcu-
lated based on the experimental influence coefficients and the total superimposed
strain outputs. If the equations are universally applicable, the calculated load
should approximate the applied load, LT‘ If for one or more of the three load distri-

butions a particular equation fails to calculate LT with suitable accuracy, the equa-

tion should be rejected because it is not universally applicable to all load distribu-
tions.

INFLUENCE COEFFICIENT PLOTS

Probably the most informative manner of presentation for load calibration data is
the influence coefficient plot. The influence coefficient plot provides a way to look
at the output per unit applied load as a function of span location for a given chord
location for each strain gage bridge (ref. 6). A plot of this nature is useful in
determining whether a bridge is affected predominately by shear, bending moment,
or torsion loads, by a combination of two, or even by all three. This is illustrated
in figure 7. The ideal responses are those from strain gages that are sensitive only
to shear, bending moment, or torsion loads. Ideal responses arc rare, More
commonly, the influence cocfficient plot shows the combined effects of shear,
bending moment, and torsion loads. 'This type of response, which is referred to
herein as a complex response, is frequently nonlinear in nature (ref. 6). The
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purpose of combining several steain gages into an equation is to attempt to ereate
an ideal or nearly ideal response,

An cquation can be plotted similarly and examined on the same basis. This
provides an excellent way to examine the characteristios of the equations in terms
of the load location, Influence coefficient plots for the equations presented in
table 1 are shown in figures 8, 9, and 10. The shear equations are plotted in
figure 8, ihe bending moment cquations in figure 9, and the torsion cquations in
figure 10. In the ideal cnse, these plots would be similar to the shear, bending
moment, and torsion plots in figure 7(a). An ideal shear equation would appear as
& horizontal straight line. An ideal bending moment equation would appear as a
straight line passing through the origin. An influence cocfficient plot of an ideal

torsion equation would have the same shape as the planform of the constant chord
lines,

RESULTS AND DISCUSSION

The computational procedure shown in figure 4 was applied to the load-
calibrated wing, the derived equations, and ithe set of hypothetical loads discussed
in previous sections. A 44,480-newton (10,000~pound) load was applied mathemat-
ically to the wing structure using the three distributions shown in figure 3. These
load distributions are referred to hereafter as the forward center of pressure
loading, the central center of pressure loading, and the aft center of pressure
loading. The procedures outlined in the Computational Procedures section were
used to apply the local loadings and to calculate the total output for each of the
strain gages under each load condition. The outputs for each of the three load
distributions were input to the appropriate equations from table 1 and the resulting
calculated loads for shear, bending moment, and torsion were then compared to
the known applied load. The results are shown in figures 11 to 13.

Shear Loads

In figure 11, the calculated shear loads are compared to the 44, 480-newton
(10,000-pound) appliced load for the eight shear equations. The figure shows that
the calculated loads are smaller than the mathematically applied load. In addition,
the calculated loads more closely approximate the mathematically applied load for
the forward and central center of pressure loadings than for the aft center of pres-
sure loading. There is a significant variation in calculated load from equation to
cguation for all three load distributions. The variation is as high as 20 percent.

Figure 11 also shows that equation 93S comes closer to calculating the three
mathematieally applied loads than any of the other equations. However, table 2
shows that equation 938 has the second highest standard error of the cight shear
cquations. Equation 258 is almost as good as equation 938 for caleulating the
applied load and has a significantly lower standard error. The influence coefficient
plots of equations 938 and 958 (fig. 8) show that the chord lines for equation 958
are more closely packed and more closely resemble straight lines.

%
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Faquations 918 and 928 appear to be the lenst favorable shear equations hased
on the ealeulntive test used in this paper. The influenee coefficiont plot for equa-
tion 918 shows a lot of seatter and some significant nonlinearitics. The influence
cocfficient plot for equation 928, howaver, does not look as bad as the results of the
caleulative test imply . Comparisoen of the standard errors of the equations and
examination of the influenee cocfficient plots of the cquations do not reveal any
obvious clue as to why equations 938 and 958 result in ealculated shear loads closer
{o the analytically applicd shear load than those caleulated with cquations 918 and
925 . However, since all eight shear cquations use logical combinations of strain
gages, little variation would be expected. If these equations werce contrastcd with
cquations having illogieal strain gage combinations, trends would probahly be more
evident.

The landing gear whecl well is between the spars on which strain gage bridges
306/307 and 308/309 are located. This wheel well represants an imerruption in the
continuity of the structure. It is worth noting that equations 915 and 925 have
three strain gages forward of the wheel well and two strain gages aft of the wheel
well, whereas equations 93S and 955 have two strain gages aft of the wheel well and
three forward of the wheel well. Further investigation would be necessury to
determine whether this difference is significant.

Two other factors of importance in a study of this nature are the magnitude of
the calibration loads and how the loads are distributed over the surface of the wing.
Figure 14 shows the relative magnitudes of the calibration loads for this study. The
lengths of the vectors represent the relative magnitudes of the loads. As is true in
the calibration of most aircraft wings, the distribution of the calibration 'oads does
not correspond to the probable distribution of the flight loads. The largest calibra-
tion loads were applied aleng an inboard chord from near the leading edge to near
the trailing edge; the outboard leading edge and the entire trailing edge were
subjected to very small calibration loads. In flight, large loads are likely to occur
near the trailing edge where the control surfaces are located and near the leading
edge due to the basic character of chordwise subsonic pressure distributions. The
small calibration loads on the trailing edge probably contribute greatly to the
largest discrepancy seen in figure 11, which is the discrepancy between the calcu-
lated and mathematically applied shear loads for the aft center of pressure loading.

The local loadings that can be applied to a wing structure depend on the bearing
strength available at the particular location; therefore, the calibration loads arc
generally sized according to the local strength. This was the casc for this wing.
Figures 11 and 14 indicate that the calibration may be inadequate for deriving cqua-
tions suitable for describing loadings in an extreme aft position.

Bending Moments

The comparison of calculated and mathematically applied bending moments is
presented in figure 12. The variation in the magnitude of the bending load is caused
by the variation in the distribution of the 44,480-newton (10,000 pound) lond. As
in the comparison for sheer loads, the coleulated bending moments are smaller than
the mathematically applied bending moments. In general, the calenlated end




mathematieally applied values for the hending moments correlate hetter than those
for the shear loads, Vor the forward and aft conter of pressure londings, the ealeu-
lated bending moments for all the equations examined are within 4 percent of the
mathemeifenlly applied bending moments. The correlation is poorer for the eentral
center of pressure loading: ‘T'he ealeulated bending moments are 5 to 10 pereent
lower than the mathematieally applied bending moments. ‘I'he varintion of the ealeu-
lated bending moments among the equations is quite small for each of the lond distri-
butions.

In the influence cocfficient plots for the bending moment cquations (fig. 9),
no equotion appears to be superior to the others. Equation 81B is the least linear
and has the highest standard error of the four equations; therefore, it could be
considered to be the least reliable of the group. However, cquations 8013, 8213, and
838 have no distinguishing features that allow further ranking. Equation 80B uses
only two strain gage bridges; hence, it might be chosen because it would require
fewer data recording channels. As in the case of the shear equations, there would
be more contrast if the gage selection included illogical choices.

Torsion Loads

Torsion loads have historicallv been the most difficult loads to measure on low
aspect ratio and delta-wing lifting surfaces. The wing studied in this paper is no
exception. In adcition, cautic. must be exercised when examining torsion data
because the quuntities are dependent on the location of the reference axis. For this
study, the reference axis is at fuselage station 970 (ref. 4), which is at approxi-
mately 25 percent of the mean aerodynamie chord of the wing panel,

The comparison of the calculated and mathematically applied torsion loads is
presented in figure 13. The magnitude of the mathematically applied torsion loads
varies depending on the distribution of the 44, 480-newton (10,000-pound) load.
The figurc shows that the calculated torsion loads for the forward center of pressure
loading exceed the mathematically applied torsion load by 4520 newton-meters
(40,000 inch-pounds) to 12,430 newton-meters (110,000 inch-pounds). The varia-
tion of the calculated torsion load among the equations is as much as 7910 newtnn-
meters (70,000 inch-pounds). The calculated torsion loads for the central center
of pressure loading are smaller than the mathematically applied torsion loads by
7910 newton-meters (70,000 inch-pounds) to 16,950 nowton-meters (150,000 inch-
pounds). The variation of the calculated torsion load among the equations is as
large as 9040 newton-meters (80,000 inch-pounds). The calculated torsion loads
for the aft conter of pressure loading show the largest deviations from the mathe-
matically applied load: The calculated torsion loads are smaller by 56,500 newton-
meters (700,000 inch-pounds) to 84,750 newton-meters (750,000 inch-pounds).
The variation of the calculated torsion loads among the equations was s large as
28,250 newton-meters (250,000 inch-pounds).

The standard errors of the six torsion equations (table 2) range from
2585 newton-meters (22,880 inch-pounds) to 4740 newton-meters (41,920 inch-
pounds). For the forward center of pressure loading, the enlculated torsion loads
from equations 90T and 91T have the largest and smallest deviations from the
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mathematically applied loads, However, these two equations also have the largest
atandard errors of the six equations. The daviations of the ealeulated torsion loads
from the mathematieally applied torsion loads for the eentral eenter of pressure
londing are clearly outside the ranges of the standard errvors for the torsion equa-
tions, VFor the aft eenter of pressure londing, the deviations are at least an order of
magnitude larger than the standard crrors for this set of torsion aquations, This
diserepaney between the ealenlated and mathematically applied torsion loads for

tho aft center of pressure londing corresponds to the diserepancy for the shear Jonds
and is assumed to be influenced by the low magnitude of the calibration loads at the
trailing edge (fig. 14). It ia also important to note that the deviation of the caleu-
lnted torsion load from the mathematically applied torsion load inerensed as the
conter of pressurc of the londing beeame more remote from the reference axis.

Equation 84T has the lowest stundard error of the torsion equations. Based on
the mathematical computation, cquations 917, 85T, and 90T best measure the
loadings for the forward, central, and aft centers of pressure, respectively. The
influence coefficient plots indicate that equations 84T, 85T, and 88T are equally
the best of the torsion cquations.

Equation Selection Matrices

Thus far, the standard errors of the equations, the mathematical computation
using the three load distributions, and the influence coefficient plots of the equa-
tions have been used individually to evaluate whethar an equation can calculate
loads accurately. In table 4, these factors are presented collectively in matrix form
for all the equations. Each equation was evaluated on the basis of five criteria:
the standard error, the accuracy of the calculated loads for the forward loadings,
the accuracy of the calculated loads for the central loadings, the accurucy of the
calculated loads for the aft loadings, and the appearance of the influence coefficient
plot. The equations were ranked on the basis of each of the five eriteria and an X
was recorded in the matrix for each equation that ranked in the top 50 percent of
the group for a given criterion. When distinguishing factors were not clear or did
not divide the group of equations into two halves, more or less than 50 percent of
the equations were marked for that criterion. This simple approach provides a
general identification of the most desirable equations based on the five criteria
selected. There are, of course, many other methods and criteria by which a
similar matrix can be established.

The value of such a matrix apprcach is clear. The discussion of the equations
based on individual criteria gives no definite answer as to which equation to use.
In addition, no equation recurs as the best for all or even most criteria. The matrix
approach combines the accumulated information to give a concise overview. The
matrices in table 4 show that equations 955, 928, and 938 are the most desirable
for calculating shear loads; equations 82B and 83B are the most desirable for caleu-
lating bending loads; and cquations 85T and 88T arc the most desirable for caleu-
lating torsion loads.




CONCLUDING REMARKS

The task of obtaining reliable strain gage lond equations is still complex, cven
after several deendes of oxperience. Various eriteria ean be used for ovaluating
lond equations, Statiaticnl enleulations such as atandard errors provide no lnk to .
the load to be measured in flight, Influence coefficients arc helpful in equation e
selection; howaever, interpretation is very difficult, particularly for the novice, Y 1
The mathematical ecomputation introduced in this papoer provides a means of
cexamining the behavior of equations for vadically varying distributions of load,
The use of a lond-distributing computational procedure to augment the error caleu- 1
lutions and influenee coefficient plots developed from the load calibration is of grent
value in that it links the lond calibration to the flight load to be measured rather
than just to the calibration load. This aspect cannot be overlooked if a system of
equations is to be objectively evaluated for universal application.

’ A matrix approach to equation selection is presented and an example is given.
The results show that the best equations can be selected from a group by using a p
set of criteria from which a matrix can be established. The five criteria selected
for use in the example in this paper are not necessarily recommended as a universal
set of criteria. However, it is strongly recommended that a matrix approach be
used for equation selection. 1n addition, it is recommended that the matrix eriteria
include factors that extend beyond the information of the load calibration and,
hopefully, link the load calibration to the flight load to be measured.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., March 22, 1977
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TABLE 2.—STANDARD ERRORS OF LOAD EQUATIONS
(a) Shear equations

Equation Equation §"§T§§“d error,
' B7S 1176.9 (264.6)
8BS 1557.7 (350.2)
8953 1404.7 (315.8) 4
918 1744.9 (382.3)
928 1355.3 (304.7)
938 1058.9 (440.4)
948 2610.5 (586.9)
958 1408.2 (316.6)

(b) Bending moment equations

. Equation standard error,
5 Equation N-m (in-1b)
80B 2661 ¢23,552)
81R 3692 (32,681)
‘ 828 2555 (22,618)
: 838 1439 (12,741)

(c) Terque equations

Equation l.quntiﬁn_ n:u;?':l_nl;c; error, ,
84T 2585 (22,875)
85T 3305 (29,251)
88T 3132 (27,719)
89T 36829 (32,116)
90T 4347 (38,471)
arr 4737 (41.,922)
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TABLE 4.~EQUATION SELECTION MATRICES -
(X identifies equations that give most favorable results] o
{(n) Shear cquations
1
' Equation
Criterin —
875 I 888 | 89S | 918 | 925 | 938 | 948 | 955
Standard error X --- X --- X -1 --- X
. Forward loading === -] - - X X X X
' Central loading il BRI BTN L X X X X
: Aft loading |l x|~ |--] x X X . d
I Influence A
coefficient plot X X -1 --- X X --- X ’
(b) Rending moment equations
Equation
:: Criteria
5 soi | s1r | 828 | 838
Standard error A B X X
Forward loading X X X X
Central loading S g '
Aft loading X --1 X X
! Influence
: coefficient plot X - X X

() Torsion equations

Equation

: Criterin

847 | 85T | 887 | 89T | 9071 | MIT

Standard error X X X I BT e

F Forward loading - X X — ] --- X

* Central loading .- X X S [ X

Aft londing S X X - X --
Influence

= * coefficient plot X X X B I

L i i
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Figure 1. Structural skeleton of complex delta-wing aircraft.

Strain gage
bridge
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3221323
3241325

‘h\_.‘_‘\

Figure 2. Location of strain gages with
respect to wing planform.
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Figure 3.

(b) Central center of pressure.

(c) Aft center of pressure.

Distribution of mathematically applied loads.
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Calibration load point

Figure 5. Subdivision of wing surface.

1]

Figure 6. Typical local loading.
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Figure 8. Influence coefficient plots of shear equations.
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Figare 8. Continued.

s
‘-}' .



Chord
location,
percent

a0x10" 100

60
30 Equation output

Equation output _
per unit load, 10 o P u_m’ti oad,
pmim 20 Ellnb n

N
I
0 50 100

Span location, percent

~— 200 x 10—9

(g) Equation 94S.

- Chord - 200 % 10'q

9
40 % 10 location,

percent Equation output

Equation output 100 i
per unit |Oad, 20 _ﬁ\ 60 — 100 per :il::!ti:'oad.
pm/m 10 30 1b

N

I P}
0 50 100
Span location, percent

(h) Equation 955.

Figure 8. Concluded.
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Figure 9. Influence coefficient plots of bending moment equations.
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Figure 9. Concluded.
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Figure 10. Influence coefficient plots of torsion equations.
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Figure 14, Location and relative magnitude of loads applied during load
calibration.
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